Block Directory

Contents

Getting Started

Getting Started with SAM Labs......4

Physical Blocks

Button	7
Buzzer	3
DC Motor	9
Heat Sensor	10
Light Sensor	11
Pressure Sensor	12
Proximity Sensor	13
RGB LED	14
Servo Motor	15
Slider	16
Tilt Sensor	17
Vibration Motor	18

Software Blocks

Camera	20
Car Controller	21
Color	22
Compare	23

Counter	24
Cycle Brightness	25
Cycle Colors	26
Cycle Frequency	27
Cycle Volume	28
Delay	29
Direction	30
Filter	31
Hold	32
Interval	33
Inverse	34
Key Press	35
Log Findings	35
Log Findings Morse Code	35 36 37
Key Press Log Findings Morse Code Note	35 36 37 38
Key Press Log Findings Morse Code Note Number	35 36 37 38 39
Key Press Log Findings Morse Code Note Number On/Off	35 36 37 38 39 40
Key Press Log Findings Morse Code Note Number On/Off Scale	35 36 37 38 39 40 41
Key Press Log Findings Morse Code Note Number On/Off Scale Sequencer	35 36 37 38 39 40 41 42
Key Press Log Findings Morse Code Note Number On/Off Scale Sequencer Sound Player	35 36 37 38 40 41 42 43
Key Press Log Findings Morse Code Note Number On/Off Scale Sequencer Sound Player Switch	35 36 37 38 40 41 42 43 44
Key Press Log Findings Morse Code Note Number On/Off Scale Sequencer Sound Player Switch Switch Direction	35 36 37 38 39 40 41 41 42 43 43

Text4	6
Threshold4	7
Time Trigger4	8
Toggle4	9

Logic Blocks

AND	51
OR	
NAND	
FGJ :	4
NOT	55
XOR	

Getting Started

000

0

-

U

Design a Habitat

9

Ŋ

Getting Started

Access the SAM Space app from <u>https://studio.samlabs.com/samspace</u>

Download your lesson plans from https://samlabs.com/us/content

To turn on blocks, press the On button for 2-3 seconds (on the side of the block, located above the word SAM).

If a block is charged, you'll see a red light appear. If this *doesn't* happen, plug in the micro-USB charger to charge it. The light will remain red as the block is charging. It will turn green when fully charged.

Name your new project on the top left side of the SAM Space platform

Pair the blocks to the platform. Hold your blocks near your laptop or tablet and select 'CONNECT' on the bottom left side of the platform then select 'Connect Devices' under the Pairing Panel. If your blocks are on, they will appear in the pop-up window.

Click or tap on the block and select 'Pair' on the bottom right of the pop-up window. When you do this, the light on your block will turn white.

Your SAM Block will now appear under the 'Pairing Panel.' When you exit out of the Pairing Panel you will find your block under the 'Inputs' or 'Outputs' section on the bottom left of the platform.

The blocks can be identi ied by the proximity identi ier on the screen - the more filled that bar is, the closer the block is to your device.

Getting Started

Once you have paired your blocks, drag them onto the dotted workspace on your screen.

Now you're all set to start teaching STEAM & coding with SAM Labs.

To get started with **SAM Blockly**, find the instructions at <u>support.samlabs.com/</u> knowledge/sam-studio

For help, email support@samlabs.com

Button

How It Works

The button is a simple switch. When pressed, it activates connected components.

Sample Connection

Connect the Button to an RGB LED to turn the light on and off while you're pressing the Button. Add a Toggle to turn it into a light switch that stays on or off.

Quick Challenge

Buzzer

How It Works

The Buzzer converts a signal into a vibration creating a buzzing sound. You can specify the note and volume for this output.

Sample Connection

Connect the Button to the Buzzer to play various notes.

Quick Challenge

DC Motor

How It Works

The DC (Direct Current) Motor spins a shaft at a specified speed and direction.

Sample Connection

Connect the Light Sensor to the DC Motor to control the speed of the motor based on how much light is received by the sensor.

Quick Challenge

Heat Sensor

How It Works

The Heat Sensor measures the current temperature in degrees Celsius. A new reading is displayed every time the temperature of the surrounding environment changes.

Sample Connection

Connect the Heat Sensor to the Log Findings block to track the temperature in your classroom.

Quick Challenge

Light Sensor

How It Works

The Light Sensor detects the brightness of the environment, sending out a value between 0 and 100. A low value indicates darkness and a high value indicates that there is a lot of light.

Sample Connection

Connect the Light Sensor to the RGB LED to change the RGB LED's brightness based on how much light is being received by the Light Sensor.

Quick Challenge

Pressure Sensor

How It Works

The Pressure Sensor senses an amount of force. This yields a low value for low amounts of force or a high value for high amounts of force.

Quick Challenge

Create a kitchen scale to help you bake

Real-World Comparison

Sample Connection

Connect the Pressure Sensor to the Sound Player to control sound effects using pressure.

Proximity Sensor

How It Works

The Proximity Sensor senses the presence of an object, sending a low value for a distant object or a high value for a close object.

Sample Connection

Connect the Proximity Sensor to the RGB LED to change the brightness of the light based on proximity.

Quick Challenge

RGB LED

How It Works

The RGB LED is a light that can be assigned a color from combinations of Red, Green and Blue values. The brightness can be set with a numeric input where a low value sends a dimmer light than a high value.

Sample Connection

Connect the Light Sensor to the RGB LED to control the brightness level based on how much light is being received by the sensor.

Quick Challenge

Servo Motor

How It Works

The Servo is a motor with an arm that rotates between 0 and 180 degrees according to an input value.

Sample Connection

Connect the Light Sensor to the Servo Motor to vary the position of the motor's arm based on the amount of light in the room.

Quick Challenge

Slider

How It Works

The Slider has a handle that slides up and down representing values between 0 and 100 depending on where the handle is positioned.

Sample Connection

Connect the Slider to the RGB LED to control the brightness of the light.

Quick Challenge

Tilt Sensor

How It Works

The Tilt Sensor sends a true or false signal when the orientation of the device changes.

Sample Connection

Connect the Tilt Sensor to the DC Motor to turn the motor on and off.

Quick Challenge

Vibration Motor

How It Works

The Vibration Motor creates different levels of vibration when it's spinning, based on an input value.

Sample Connection

Connect the Slider to the Vibration Motor to vary the level of the vibration.

Quick Challenge

Camera

How It Works

The Camera block enables you to take photos. When it receives a signal, it takes a picture using your device's default camera and saves it to the device.

Sample Connection

Connect the Button to the Camera to take photos of your classroom experiments.

Quick Challenge

Car Controller

How It Works

The Car Controller block enables you to control a car using your tablet's built-in accelerometer.

Sample Connection

Connect the Car Controller to two DC Motors to control a moving car.

Quick Challenge

Real-World Comparison

Car Controller

Color

How It Works

The Color block enables you to choose and change the color of the RGB LED. When it receives a signal, the color of the RGB LED changes to the color you select.

Sample Connection

Connect a Button to a Color block and an Inverse. Connect a different colored Color block to the Inverse. Connect both Color blocks to an RGB LED. The RGB LED's color will change from one to the other.

Quick Challenge

Compare

How It Works

The Compare Block allows you to compare incoming values against a predefined number.

Sample Connection

Connect a Light Sensor to a Compare block, and the Compare block to the RGB LED. The light will turn on and off based on the comparison you have defined.

Quick Challenge

Counter

How It Works

The Counter Block counts numbers every time it is activated.

Sample Connection

Connect a Button to a Counter, the Counter to the Compare block (\geq 5), and the Compare block to the RGB LED. Press the Button 5 times and the light will turn on.

Quick Challenge

Cycle Brightness

How It Works

The Cycle Brightness block rotates between levels of brightness. Every time time this block receives a signal it will cycle between 3 percentages: 0%, 50% and 100%.

Sample Connection

Place the Cycle Brightness block between the Light Sensor and an RGB LED. Vary the amount of light being received by the Light Sensor to see the brightness change on the RGB LED.

Quick Challenge

How It Works

The Cycle Color Block cycles between Red, Green and Blue each time it is activated.

Sample Connection

Place the Cycle Colors block between a Light Sensor and an RGB LED. Vary the amount of light being received by the Light Sensor to see the colors change on the RGB LED.

Quick Challenge

Cycle Frequency

How It Works

The Cycle Frequency block cycles between frequency (pitch) levels. Every time this block receives a signal it will cycle between 3 preset buzz pitch levels.

Sample Connection

Connect a Key Press block to a Cycle Frequency block, and the Cycle Frequency block to a Buzzer. Press the key assigned to Key Press block and notice the Buzzer frequency change for every key press.

Quick Challenge

Cycle Volume

How It Works

The Cycle Volume Block cycles between 15%, 45% and 70% volume each time it is activated.

Sample Connection

Connect a Key Press block to a Cycle Volume block, and the Cycle Volume block to a Buzzer. Press the key assigned to Key Press block and notice the Buzzer volume change for every key press.

Quick Challenge

Delay

How It Works

When the Delay block receives a signal, it waits a specified amount of time before actioning the desired behavior.

Sample Connection

Connect a Button to a Delay block and the Delay block to a Buzzer. Set a delay by defining a length of time in the Delay's settings to create a delay before the Buzzer buzzes.

Quick Challenge

Direction

How It Works

The Direction Block is used to control the direction of a DC Motor. A positive input indicates the motor should rotate in one direction and a negative input indicates the other direction.

Sample Connection

Connect the Direction block to both a Key Press and a DC Motor to control the direction of the motor.

Quick Challenge

Filter

How It Works

The Filter block only allows certain values through. It identifies a set of two numbers which define the boundaries of what will receive a signal.

Sample Connection

Connect the Light Sensor to a Filter block and DC Motor. When the light level is within a certain brightness boundary, the DC Motor will move.

Quick Challenge

Hold

How It Works

The Hold block extends a value for a specified amount of time and then turns off.

Sample Connection

Connect the Button to the Hold block and the Hold block to the DC Motor. The DC Motor will move for the amount of time you set in the settings of the Hold block.

Quick Challenge

Interval

How It Works

The Interval Block toggles on and off at fixed time increments.

Sample Connection

Connect the Button to the Toggle, the Toggle to the Interval, and the Interval to the Sound Player. Set the interval time to hear the Sound Player play at your specified intervals.

Quick Challenge

Inverse

How It Works

The Inverse block converts any value it receives into the opposite.

Sample Connection

Connect the Inverse block between the RGB LED and the Light Sensor to create a smart light that turns on when it's dark.

Quick Challenge

Key Press

How It Works

The Key Press block allows you to use your keyboard keys as buttons if you are using a device with a keyboard. It can be used with a virtual key when using a tablet.

Sample Connection

Connect the Key Press to the DC Motor to turn it on by pressing the circle above the block on your screen.

Quick Challenge

Log Findings

How It Works

The Log Findings block automatically records data and information in a spreadsheet format that you can download as a CSV file.

Sample Connection

Connect the Heat Sensor to the Interval, and the Interval to the Log Findings block to record the changing temperature throughout the day.

Quick Challenge

Morse Code

How It Works

The Morse Code block converts a value to Morse code. It processes any received value to text, and then converts that text to Morse code.

Sample Connection

Connect the Button to the Text block, the Text block to the Morse code block, and the Morse Code block to a Buzzer to hear the output in Morse code.

Quick Challenge

Note

How It Works

The Note Block sends a single musical note to connected Buzzer blocks. A numeric input will select the note that is played.

Sample Connection

Connect a Key Press block to a Note block, and the Note block to a Buzzer. Press the key assigned to the Key Press block to send a note to the Buzzer.

Quick Challenge

Number

How It Works

The Number block will convey a number that you specify when it receives a signal.

Sample Connection

Connect a Button to the Number block and set the value to any number between 1 and 100. Connect the Number block to an RGB LED to control the brightness of the light based on your input.

Quick Challenge

On/Off

How It Works

An On/Off Block converts any input into a button that turns any connected blocks on or off.

Sample Connection

Connect the Light Sensor to the On/Off block and then to the RGB LED. If the value of the Light Sensor is greater than zero, the light will turn on.

Quick Challenge

Scale

How It Works

The Scale block remaps numbers within a configured range to another range of 0-100. For example, an input value of 10 within a range of 0-50 would become 20 when remapped to a range of 0-100.

Sample Connection

Connect the Pressure Sensor to the Scale and the Scale to an RGB LED. Edit the range to 30-60. When you press the Pressure sensor, the light will change based on whether it's below, within or above the range.

Quick Challenge

Sequencer

How It Works

The Sequencer block allows you to compose a series of musical notes together in a specific order to create a melody.

Sample Connection

Connect a Button to a Sequencer and the Sequencer to a Buzzer. Select a sequence of notes, press and hold the Button to play the tune.

Quick Challenge

Sound Player

How It Works

The Sound Player block enables you to select an audio file to play. When it receives a signal, it produces sound.

Sample Connection

Connect the Button to the Sound Player to play your favorite sound effect.

Quick Challenge

Switch

How It Works

The Switch block acts like a gate that allows information to flow through or not. If a condition is true, you can pass information through it.

Sample Connection

Connect two Buttons to a Switch block and the Switch block to an RGB LED. In the Switch settings, assign one button as the input. This button will now complete the circuit, allowing the other Button to turn the light on.

Quick Challenge

Switch Direction

How It Works

The Switch Direction block enables you to flip the current direction of the DC Motor.

Sample Connection

Connect a Button to the DC Motor. Connect the Button to the Switch Direction and then the Switch Direction block back to the DC Motor. When you press the Button, the DC Motor will change its direction.

Quick Challenge

Text

How It Works

The Text block enables you to enter and send text. When it receives a signal, it will send the specified text value.

Sample Connection

Connect the Button to the Text block, the Text Block to the Morse Code block, and the Morse Code block to the Buzzer to send a custom message via Morse Code.

Quick Challenge

Threshold

How It Works

The Threshold Block sends a signal when an input passes a given limit.

Sample Connection

Connect a Light Sensor to the Threshold block. Connect the Threshold to the RGB LED. Define the number threshold to turn the light on and off.

Quick Challenge

Time Trigger

How It Works

The Time Trigger block activates connected blocks at a specified date and time.

Sample Connection

Connect a Time Trigger to a Sound Player. Set the Time Trigger by selecting a future time and wait to hear the sound play at that time.

Quick Challenge

Toggle

How It Works

A toggle is a switch that flips between on and off when activated.

Sample Connection

Connect a Button to an RGB LED and place the Toggle in between. This will enable the light to stay on or off without needing to continuously hold down the button.

Quick Challenge

AND

How It Works

The AND block is a logic gate that is active when all inputs are active.

Sample Connection

Connect both a Button and a Slider to an AND block. Connect the AND block to a Sound Player. The Sound Player will play only when the Button is pressed and the Slider is set to 100.

Quick Challenge

OR

How It Works

The OR block is a logic gate that is active when any input is active (one, multiple or all).

Sample Connection

Connect a Light Sensor to two Compare blocks, one set to < 20 and the other > 80. Connect both to OR and the OR block to an RGB LED. If the reading on the Light Sensor is < 20 or > 80, the light will turn on.

Quick Challenge

NAND

How It Works

The NAND block is a logic gate that is not active only if both inputs are active.

Sample Connection

Connect a Slider block to one Compare block, set to =60. Repeat this step with another Slider. Connect both Compare blocks to an NAND block and connect the NAND block to an RGB LED. If both Sliders are =60 the light will turn off.

Quick Challenge

NOR

How It Works

The NOR block is a logic gate that's active only when no inputs are active. This is the opposite of the OR block. So x NOR y is true precisely when neither x nor y is true—i.e. when both x and y are false.

Sample Connection

Connect a Light Sensor to a Threshold and the Threshold to a NOR block. Do this again. Connect the NOR blocks to an RGB LED. If it's darker than a certain level that is read by both sensors, the light will turn on.

Quick Challenge

NOT

How It Works

The NOT block is a logic gate that is not active when an input is true and active when an input is false.

Sample Connection

Connect a Light Sensor to two Compare blocks, one set to < 20 and the other > 80. Connect both to OR and the OR block to an RGB LED. If the reading on the Light Sensor is < 20 or > 80, the light will turn on.

Quick Challenge

XOR

How It Works

The XOR block is a logic gate that outputs true only when inputs differ (one is true, the other is false). This could be written as "A or B, but not both A and B."

Sample Connection

Connect two Key Presses to the XOR block and the XOR block to an RGB LED. The light will only turn on when either one of the Key Press buttons are pressed.

Quick Challenge

For help, email support@samlabs.com